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Abstract. Using the transfer matrix method, the solution of the scattering problem on the 
finite periodic chain of equal symmetric potentials is found in terms of the partial reflection 
and transmission coefficients. A simple algebraic result is presented showing that the 
transmission coefficient oscillates rapidly between one and some lower value when the 
energies lie in the allowed Bloch band. A special case of S potentials is discussed using the 
momentum representation. The explicit form for the transmission amplitude can also be 
used to determine positions of the bound states. 

1. Introduction 

Since the historic paper of Kronig and Penney (1930) on electron motion in an infinite 
or half-infinite one-dimensional periodic chain of S potentials, this model has served as 
a valuable tool in explaining several interesting physical properties of real materials. It 
is surprising, however, that the corresponding problem with a finite number of 
scattering centres does not seem, at least to our knowledge, to have merited comparable 
attention. Pshenichnov (1962) has investigated the scattering problem on a periodic 
finite chain of identical potentials using the WKR approximation and has shown the 
existence of a resonance effect in the transmission coefficient. Reading and Siege1 
(1972) have considered particle scattering from a finite chain of S potentials of arbitrary 
strengths and positions, using the momentum representation. 

The aim of this article is to present an exact solution of the scattering problem for a 
finite chain of N equally-spaced symmetric potentials. Using the transfer matrix 
method one can derive a simple algebraic expression for the total transmission 
coefficient (0 2) containing two parameters of the partial reflection and transmission 
coefficients by which a single potential, forming a chain, is characterised. The 
resonance effects are observed when the transmission coefficient is exactly equal to one. 
The corresponding energies lie in the allowed Bloch bands of an infinite periodic chain. 
It seems that the latter property is valid only for the strictly periodic structure. The 
general results are also illustrated for a S potential model (§  3), using the momentum 
representation. 

2. Scattering states via the transfer matrix method 

One considers the scattering of one particle off a finite one dimensional chain of 
equally-spaced identical potentials U ( x ) .  The total potential takes the form 

N-1 

U ( x ) =  v ( x - j a )  
i = O  
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where v(x) is a symmetric potential, v(x) = U( -x),  which vanishes outside of the 
interval -$a < x <$a. In what follows the units h = 2m = a = 1 are adopted. 

The wavefunction can be written in the form 

$(x) = exp(iKx) + R exp( - iKx), x<-$ -  (2) 

$(x)= ai{t exp[iK(x-j)]}+bj {exp[-iK(x - j ) ]+r  exp[iK(x -j)]}, x - j + $  (3a)  

$(XI = ai {exp[iK(x - j)] + r exp[ - iK (x - j ) ] }  + bi{t exp[ - iK(x -ill}, (3 b)  x - j - 
$(x) = T exp iKx, x > N - $ .  (4) 

Equations (2) and (4) define the reflection and transmission amplitudes. The validity of 
the forms (3a)  and (3b) is restricted to the region where the potential (1) is zero. They 
represent a linear combination of the two independent wavefunctions for scattering 
from a single symmetric potential v(x), with incident waves coming from opposite 
directions (Ashcroft and Mermin 1976). The asymptotic forms contain the partial 
energy-dependent reflection and transmission amplitudes, r and t respectively. The 
transfer matrix M (Hori 1968) 

is determined by requiring the equality of the wavefunctions (3a)  and (3b) and their 
derivatives at the point x = j - $: 

t exp(iK) r exp(iK) 
-r exp(iK) exp( - iK) - r2 exp(iK) 

M =  t 

Finally 

together with the boundary conditions 

taN-1= T bN-i= 0 

t ao= l - rR  bo=R. 

The matrix M-"-l' is evaluated by the Lagrange-Sylvester formula: 

The parameters A 1  and A Z  are the eigenvalues of the matrix M: 

A = exp(ik) A 2  = exp( -ik) 

where the wavevector k is expressed through r and t :  

1 cos(K + 8 )  2 2  t - r  
COS k = z( - exp(iK) i- - exp( - iK)) = 

t t It1 

with 

t = It/ exp is r = ilrlexp is l t / 2+ / r /2=  I .  

(10) 
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Hence the matrix M-"-" is expressed in the form 
M-(N-1) 

'sin Nk sin ( N  - l ) k  sin ( N  - l ) k  
t exp(iK) - r exp (iK) -- 

sin k sin k sin k 
sin Nk exp( - iK) - r2 exp(iK) sin ( N  - l ) k  -_ sin ( N  - l ) k  

r exp(iK) 
sin k sin k t sin k 

( 1 3 )  
The final expressions for the transmission amplitude T and the transmission coefficient 
/TI2 are 

exp[ - i(N + 1 ) K ]  
cos Nk -i(sin(K + S)/itl)(sin Nklsin k) '  T =  

I 
1 + /r/tI2(sin2 Nk/sin2 k ) '  ITl2 = 

The wavevector k defined through equation ( 1 1 )  can be either real or pure 
imaginary, according as lcos kl is less than or greater than one. This corresponds to the 
usual distinction between the allowed and forbidden energy bands of an infinite chain. 
From the form ( 1 5 )  one can see the typical oscillatory behaviour of the transmission 
coefficient in the allowed bands, reaching the value one exactly at N - 1 points when 
k = njr /N,  with n labeling the particular band and j running between 1 s j s N - 1. 
With increasing negative strength of the potential ( 1 )  the number of energies in the first 
energy band with /TI2 = 1 gradually diminishes. In the forbidden bands the trans- 
mission coefficient ( 1 5 )  is always less than one. 

3. Scattering states illustrated by a S potential model 

When the potential is formed by a chain of 6 functions U ( x )  = VZEil S ( x  - j ) ,  a 
convenient method leading to the solution ( 1 5 )  is also furnished by considering the 
Schrodinger equation in the momentum representation: 

The solution 4 ( 4 )  containing only outgoing scattered waves has the form 

or in coordinate space: 
i N-l 

K j = o  
$ ( x )  = exp(iKx) +- 1 ci exp(iK1x - j l ) .  

The amplitudes of the scattered waves satisfy the set of linear inhomogeneous 
equations 

iK N-1 

-- cn + 1 exp(iK1x - jl)ci = iK exp(iKn), n = 0 , 1 ,  . . . ,  N - 1  v j = o  

(19)  
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which can be cast in ihe form 

K K 
V 2 sin K +-exp(-iK) 

K 
V V 

2 sin K + - exp( - iK) 

wliere 

(21) 
V 
K 

cos k =cos K +-sin K. 

The equivalence of the two sets (19) and (20)  of equations can be directly verified by 
adding respectively the first and second rows, the (N - 1)th and the Nth  rows, as well as 
the jth and the ( j  + 2)th rows of the set (19), multiplied by suitable factors. 

The set (20c) leads to the solution 

cn = y1 exp(ikn) + y2  exp( - ikn) (22)  
where the two constants y1 and y2  are determined through (20a)  and (20b).  Finally 
from the wavefunction (18) the results (14) and (15) for the transmission amplitude and 
coefficient are easily reproduced: 

exp[ - i(N + 1)K] 
cos Nk -i[( V/K) sin K -cos Klsin Nklsin k’ 

T =  

1 
1 + ( V/K)2(sin2 Nk/sin2 k ) *  

\TI2 = 

Equation (16) can also be used for the calculation of the energy levels of the bound 
states. According to general principles they are identified as the poles of the trans- 
mission amplitude T lying on the imaginary axis of the K plane (Newton 1966). One 
can see that the number of bound states is equal to N when /cos kj < 1. They begin to 
disappear in the region - 2 < V < 0, where the number of missing states is equal to the 
integer part of (NIT)  cos-1( - 1 - v). 
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